Integrated systems
Integrated systems, or systems integration, is the process of bringing together component sub-systems into one functional system. It provides a system with coherence by making the parts or components work together, or ‘building or creating a whole from parts’ (Langford, 2013).
It has particular relevance to information technology – where different pieces of hardware and software act together as a coordinated system – but also civil engineering and infrastructure projects, where it can be viewed as a distinct phase of the delivery process. The interactions between subsystems enable the integration of sometimes apparently disparate systems, adding value to the system as a whole in terms of increased efficiency, accuracy or cost-effectiveness.
In construction, collaboration is required across many different parties – owners, clients, consultants, contractors, suppliers and so on. Systems integration techniques can be used to synthesise knowledge across different areas of expertise, roles and responsibilities. For example, Heathrow Terminal 5 and the 2012 London Olympics used systems integration to ensure that parts, components, units, sub-assemblies, subsystems and systems worked together as a whole.
The table below contains a summary of the main tools, techniques and approaches for systems integration:
TOOLS, TECHNIQUES & APPROACHES | FOCUS AND USES |
SySML | SysML is a modelling language based on UML that can be used to describe systems and their interconnections. It has been used in research on integrated and sustainable design in buildings and infrastructure. |
General theory of systems integration (GTSI) | Systems consist of objects and processes that have non-reciprocal emergence. An object has mechanisms that have logic structures, enacted in processes involving energy, matter, material wealth and information (EMMI). |
Design Structure Matrix (DSM) | DSM is a matrix used to consider the interdependencies between different components of the process in order to sequence design activities, or of the product in order to understand and cluster ex-ante components with high levels of interdependence. |
Network analysis | Software tools such as UCINet and Gephi are used in social network analysis (SNA), with other programming tools such as igraph. SNA can be used to examine the heterogeneous networks involved in projects and their dynamics. There is an opportunity to link this understanding with performance. |
Systems dynamics | This approach is used in understanding the dynamics of management in complex projects, and for understanding error propagation and rework. |
STAMP | System theoretic accident model which treats accidents as a chain of events rather than seeking root causes, and sees reliability and safety as different properties of systems. |
Montecarlo simulation | Used to get probabilities of different outcomes occurring, with respect to the perturbations of a defined network. Unlike DSM, it can provide information about the resilience of a given network to particular types of events. |
Scenario planning | An operational scenario tool proposed as part of the implementation strategy for asset management. |
Data analytics is increasingly being used by a new generation of systems integration tools to visualise and understand relationships between components, and the systemic consequences of any changes, in complex systems.
Machine learning, graph theory, systems dynamics and scenario planning techniques can all be used to improve the delivery of complex projects. The challenge involves combining data-sets and model-based systems engineering to reveal new patterns.
In addition, new immersive technologies such as virtual reality and augmented reality are being promoted as methods that can enable proactive collective decision-making by understanding projects as complex product systems.
Researchers claim there are opportunities to collect and aggregate data and use new forms of analysis to identify underlying patterns and visualise these to identify risk and build resilience into engineered systems. They point to the military sector which uses command, control, communications and intelligence as a forerunner of the potential of the technique.
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
- 3D MOVE: Mobile Immersive Visualisation Environment.
- Advanced construction technology.
- Artificial intelligence and civil engineering.
- Augmented reality in construction.
- Collaborative practices for building design and construction.
- Immersive Hybrid Reality IHR.
- Integrated modelling, simulation and visualisation (MSV) for sustainable built healing environments (BHEs).
- Integrated transport system.
- Virtual construction model.
Featured articles and news
The act of preservation may sometimes be futile.
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.
A new government plan for housing and nature recovery
Exploring a new housing and infrastructure nature recovery framework.
Leveraging technology to enhance prospects for students
A case study on the significance of the Autodesk Revit certification.
Fundamental Review of Building Regulations Guidance
Announced during commons debate on the Grenfell Inquiry Phase 2 report.
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.